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The implementation of fuel cell vehicles requires a supervisory control strategy that manages the power
distribution between the fuel cell and the energy storage device. Some of the current problems with power
management strategies are: fuel efficiency optimization methods require prior knowledge of the driving
cycle before they can be implemented, the impact on the fuel cell and battery life cycle are not considered
and finally, there are no standardized measures to evaluate the performance of different control methods.
eywords:
EMFC
ybrid fuel cell–battery vehicle
ower management
attery life

In addition to that, the performances of different control methods for power management have not been
directly compared using the same mathematical models. The proposed work will present a different
optimization approach that uses fuel mass flow rate instead of fuel mass consumption as the cost function
and thus, it can be done instantaneously and does not require knowledge of the driving cycle ahead of
time. Also this study presents an experimental approach to validate the mathematical simulation results.
lectric powertrain
ontrol design

. Introduction

While the addition of an energy storage device to fuel cell
ehicles (i.e. fuel cell–battery hybrid vehicles) helps significantly
mprove the efficiency and transient response, it also adds another
imension to the design process. A power management strategy is
eeded to optimize the performance of the two energy sources.
his paper is focused on studying power management in fuel
ell–battery hybrid vehicles. In particular this paper is concerned
ith configurations where hydrogen fuel is the only source of

nergy (i.e. not a plug-in configuration). A literature survey shows
hat various forms of control methods have already been consid-
red and implemented for power management between the fuel
ell engine and the battery. In general, these control methods follow
ither a rule based approach or an optimization approach. Fuzzy
ogic controllers have been the common method used in the case
f the rule based approach. This can be seen in the work of Jeong
t al. [1] and Kisacikoglu et al. [2], where a fuzzy logic controller
ictates the load sharing based on the state of charge (SOC) of the
attery and the vehicle load demand. The optimization approach

n the other hand is mainly concerned with the fuel consump-
ion of the vehicle as shown in the work presented by Gao et al.
3] and several others [4–6]. This approach finds the optimal load
haring ratio between the fuel cell and the battery by minimiz-
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ing a fuel consumption cost function over the range of the driving
cycle.

Both of the mentioned approaches have their own drawbacks.
The main difficulty with fuzzy logic controllers is that they require
training data in order to correctly form the membership functions
and set of “if-then” rules that dictate the output of the controller.
While the difficulty with the optimization approach is that it
requires prior knowledge of the intended driving cycle, which is
a challenge in on its own. An alternative approach that combines
fuzzy logic and optimization was presented in [7], where Li and Liu
used optimization to obtain training data to design the fuzzy logic
controller parameters. While this is an improvement on fuzzy logic
controllers, it still does not guarantee optimal operation since it
is very difficult to predict the real world driving pattern. Recently,
another interesting study published by Xu et al. [8] at Tsinghua Uni-
versity presented a different optimization approach that uses fuel
mass flow rate instead of fuel mass consumption in the cost func-
tion and thus, it can be done instantaneously and does not require
knowledge of the driving cycle ahead of time. However, the effec-
tiveness of this approach has not been compared directly with other
conventional controllers such as the fuzzy logic controller. This
comparison is important because minimizing fuel consumption is
only part of the controller objective, the controller must also main-

tain the battery SOC at acceptable operating conditions. Thus, the
main difference between control methods is how they go about sus-
taining the battery charge level. Some control methods will make
the battery discharge/charge more often than others. While main-
taining the SOC is important to the battery life, charging the battery

dx.doi.org/10.1016/j.jpowsour.2010.11.114
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:bzhou@uwindsor.ca
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The fuel cell efficiency is obtained by dividing the fuel cell polar-
ization curve voltage by the higher heating value theoretical voltage
(1.48 V) as shown in Fig. 3. Note that for the sake of simplicity, and
since this model is focused on the control algorithm, the efficiency
losses due to parasitic loads are not considered.
Fig. 1. Vehicle configuration.

ore than needed will result in lowering the overall fuel efficiency
nd also reducing the battery life. Thus, there is a tradeoff between
he extended battery life and fuel efficiency when designing power

anagement strategies for fuel cell–battery hybrid vehicles.
The work presented in this paper will carry on the work

resented in [8] to design an instantaneous optimization power
anagement controller. However, in order to validate the opti-
al controller design, this paper establishes a set of performance
easures to compare the effectiveness of the designed optimal con-

roller with a fuzzy logic and a PID controller designed for the same
ehicle application. These performance measures take into con-
ideration: battery life, total fuel consumption and instantaneous
fficiency. Most importantly this paper will present a hardware-in-
he-loop experimental setup used to validate the results obtained
rom the mathematical models.

. Vehicle configuration

The vehicle chosen as the application case for this study is the
AE Baja vehicle designed and built by undergraduate students at
he University of Windsor [9]. The main advantages of using the SAE
aja vehicle is its availability for experimental testing, simplicity
f powertrain components and also relative ease of mathemati-
al modeling. Despite the fact that the SAE Baja vehicle does not
all under an actual road vehicle weight class, the conclusions
btained from this study can still be generalized and considered
hen designing control algorithms for fuel cell vehicles. The vehi-

le considered in this study has a mass of 308.45 kg, frontal area of
.9 m2 and a wheel radius of 0.1397 m.

The rated power of the SAE Baja vehicle is 7 kW, therefore, a 5 kW
uel cell engine, a 10 Ah lithium-ion battery stack and a 13 kW AC
nduction motor were selected to propel the SAE Baja vehicle. A
0 Ah battery stack was selected because it is sufficient to satisfy
he vehicle loads over the length of the driving cycle before reach-
ng 0% state of charge. The fuel cell selected for this application is
he H-5000 manufactured by Horizon Fuel Cell Technologies, while
he battery stack is assumed to be constructed of the Sony 18650
1.8 Ah) lithium-ion cells. The selected AC motor has rated torque
nd speed of 100 Nm and 6000 rpm, which is enough to propel the
AE Baja vehicle at a speed of 30 km h−1 and maximum road slope
f 15◦. The motor speed is controlled through a Curtis Instruments
peed controller (model: 1236), where this controller also includes
DC/AC inverter for interfacing the electric motor drive to the DC
us. The powertrain configuration is shown in Fig. 1.

. Vehicle model
The mathematical models for each one of the vehicle com-
onents are implemented in MATLAB/Simulink. The vehicle is
odeled using the simple longitudinal vehicle dynamics equations,
here the total power required to drive the vehicle is calculated
Fig. 2. Fuel cell polarization curve.

based on the aerodynamic drag, rolling resistance, acceleration and
road grade power requirements:

P =
[

1
2 �CdV2 + mg Cr cos � + mg sin � + ma

]
(rwheel)ω (1)

where V, a, and ω are the vehicle velocity (m s−1), acceleration
(m s−2) and wheel angular velocity (rad s−1) respectively. The elec-
tric motor drive is modeled based on experimental data provided
by the manufacturer; the data is used to construct a lookup table
that determines the motor torque, power and also the amount of
rms-current being drawn given a known motor speed.

4. Fuel cell model

For the purpose of this study, the fuel cell model is kept as simple
as possible, where the fuel cell is modeled as a voltage source with
a variable voltage loss across its terminals. The voltage loss was
determined based on the polarization curve provided by Horizon
Fuel Cell Technologies [10]. Also, a three second time constant is
simulated on the fuel cell response by adding a first order transfer
function to its output voltage signal. The hydrogen fuel mass flow
rate is calculated as follows:

ṁH2 = N(ifc)(Mhydrogen)
neF

(2)

where N is the number of cells, M is the molar mass of hydrogen
gas, ne is the number of electrons transferred and F is Faraday’s
constant. The polarization curve is shown in Fig. 2.
Fig. 3. Fuel cell efficiency.
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In order to accommodate for the fuel cell voltage drop, a DC/DC
onverter is used to maintain a constant voltage output while vary-
ng the output current. The converter used is a current controlled
oost converter. The change in efficiency of the DC/DC converter as
he power transferred is increased is assumed to be minimal, thus,
n average value for the efficiency can be used. In this paper, the
C/DC converter efficiency is assumed to have an average value of
0%.

. Battery model

The battery stack is modeled based on experimental test data
vailable in literature. In a study to develop a mathematical model
or lithium-ion batteries, Khateeb et al. [11] performed discharge
ests on the Sony 18650 Li-ion battery cell in order to develop a
elationship between the battery state of charge, the open circuit
oltage and the internal resistance. The experimental results were
urve fitted and the voltage drop across the battery terminals is
epresented using the following equations:

(SOC) = 0.20139 + 0.58863(1 − SOC)

− 0.81697(1 − SOC)2 + 0.79035(1 − SOC)3 (3)

o(SOC) = 3.95587 − 1.42918(1 − SOC)

+ 2.83095(1 − SOC)2 − 3.7497(1 − SOC)3 (4)

OC(t) = 1 −
∫

idt

Q (Ah)
(5)

Therefore, the total voltage drop across the battery terminals is
alculated by subtracting the internal resistance voltage loss from
he open circuit voltage:

batt = ns(Vo(SOC) − IR(SOC)) (6)

here ns is the number of battery cells in series. The battery effi-
iency in discharge mode is determined based on the open circuit
oltage as shown below:

ffbatt = Vbatt

Vo(SOC)
(7)

. Performance measures

While, system efficiency and fuel consumption are the two main
erformance measures that are always considered for hybrid vehi-
les, the life time of the battery in the hybrid powertrain is often
ot considered. Even though estimating the life of battery requires
xtensive testing, the battery life is mainly related to the number
f charge/discharge cycles. In hybrid vehicles however, the battery
oes not go through full charge/discharge cycles, instead it is forced
o go through partial SOC cycling. Although, lithium batteries do not
uffer from “memory effect”, it has been shown in a study by Kato
t al. [12] that partial SOC cycling can still have an impact on the
attery life. Thus, the two power management methods examined

n this work will be compared based on the number of partial SOC
harge/discharge cycles the battery has to go through during the
imulation.
Another performance measure is the overall system efficiency.
he system efficiency of a hybrid powertrain depends on the mode
f operation: hybrid drive, regenerative braking or just charging the
attery. Therefore, an efficiency expression can be derived using the
ollowing “if-else” statements:
ources 196 (2011) 3271–3279 3273

If power demand > 0, then:

Effhybrid = Pdrive

(ṁH2 )(HHVH2 ) + (Ibatt)(Vbatt OC(SOC)/(EfffcEffDC))
(8)

Note that the battery’s open circuit voltage is divided by the fuel
cell and DC/DC converter efficiencies since the vehicle is assumed
to have no plug-in capabilities.

Else, if power demand < 0, then:

Effregen =
∣∣(Ibatt)(Vbatt OC(SOC))

∣∣
(ṁH2 )(HHVH2 )+

∣∣Pdrive

∣∣ (9)

Else, if battery power < 0, then:

Effcharge =
Pdrive +

∣∣(Ibatt)(Vbatt OC(SOC))
∣∣

(ṁH2 )(HHVH2 )
(10)

where ṁH2 is the hydrogen fuel mass flow rate (kg s−1), HHVH2
is the higher heating value of hydrogen fuel (141.9 MJ kg−1), Vbatt
is the measured battery voltage at its terminals, Vbatt OC (SOC) is
the open circuit voltage as a function of the state of charge of the
battery and EffDC is the efficiency of the DC/DC converter. Note that
the if/else statement allows the battery to either be a sources or a
sink, and thus the sign of the current does not impact the calculation
and that is why the absolute value function is used.

In addition to the overall system efficiency, the miles per gallon
of gasoline equivalent (MPGGE) is also an important measure that
gives an insight as to how the fuel cell vehicle compares to internal
combustion engine vehicles in terms of its fuel consumption. The
conversion to the equivalent miles per gallon of gasoline is done
on the basis of the hydrogen fuel energy content compared to the
gasoline energy content. The energy content of liquid gasoline fuel
is taken to be 115,000 BTU per gallon, while the energy content
of gaseous hydrogen fuel is 113,738 BTU per kilogram, thus, the
energy in one gallon of gasoline is equivalent to that in 1.012 kg of
hydrogen fuel. Therefore, the MPGGE is calculated as follows:

MPGGE =
(

miles
kg of H2

)(
1.012

kg of H2

gallon of gasoline

)
(11)

The total fuel mass consumed during a driving cycle can be cal-
culated by integrating the fuel mass flow rate over the driving cycle
time period. However, in order to accurately measure the amount
of fuel consumed for the entire driving cycle, the initial and final
state of charge (SOC) of the battery must also be taken into con-
sideration. In other words, if the battery is assumed to have a 60%
initial SOC, then the amount of fuel required to recharge the bat-
tery back to its initial SOC must be considered when calculating the
total fuel mass as shown in the following:

mfuel(t) =
∫ t

0

ṁdriving(t)dt + mcha(t) (12)

The second term (mcha) in the equation above, represents the
fuel mass required to recharge the battery back to its initial state
of charge. This term is determined by first calculating the amount
of energy required to recharge the battery from its final SOC to its
initial SOC:

�E(t) = [Q (SOC(t) − SOCi)]Vnom (13)

where �E is the energy in Watt-hour, Q is the rated battery capac-
ity in Ampere-hour, Vnom is the nominal battery voltage, SOC(t)
is the final state of charge, and SOCi is the initial state of charge.
Then, the total hydrogen mass consumed in recharging the bat-

tery can be calculated using the hydrogen fuel higher heating value
(141.9 MJ kg−1):

mcha(t) = �E(t)
(

3600 s
hour

)(
kg

141.9 × 106 J

)(
1

Effsys

)
(14)
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Fig. 5. Fuzzy logic controller.

DOHs, and thus reducing the fuel cell’s transient response.
The membership functions for the SOC and pedal position input

variables are shown in Fig. 7. The SOC of the battery is classified
into three main categories low, medium and high to correspond
to a nominal SOC of 60%. The pedal position on the other hand is
Fig. 4. PID controller.

Note that Effsys is a nominal value of the fuel cell and battery
fficiencies.

. PID control approach

The ultimate goal in this control method is to monitor and main-
ain the state of charge of the battery at its nominal value of 60%.
n the case where the SOC of the battery drops significantly below
he reference value, a current request is sent to the fuel cell in order
o charge the battery. The magnitude of fuel cell current request is
lso controlled by the power needed to drive the vehicle. Thus, in
rder to satisfy both the battery SOC and the vehicle power demand,
wo control loops are required; a battery current control loop and
fuel cell current control loop. A PID controller is used to compare

he calculated SOC with a reference value to generate a battery
urrent demand signal. This generated signal is then used as a ref-
rence value for the battery current. Another PID controller is then
sed to generate a fuel cell current demand based on the difference
etween the battery current and its reference value. The controller

s explained by the diagram in Fig. 4.

. Fuzzy logic approach

The two input variables to the fuzzy logic controller are the pedal
osition and the SOC of the battery. The fuzzy logic controller aims
t maintaining the SOC at nominal level, for this reason the first
ontrol input to the fuzzy logic controller is the SOC of the bat-
ery. The second input variable is selected to be the driver pedal
osition. This variable represents the driver’s response to two fac-
ors: the resistance force and the desired speed, in other words,
he driver will either press or release the pedal depending on how
ast he/she wants to drive and also how much resistance force (air
rag, rolling drag and gravity) the vehicle is facing. The pedal posi-
ion is determined using the classic cruise control example, where
PID controller is used to adjust the driver “pedal position” from
1 to 1 depending on how well the vehicle is matching the com-
and speed. Physically, a pedal position from 0 to 1 represents the

river using the accelerator, while a pedal position from 0 to −1
epresents the driver using the brake.

The first output variable of the fuzzy controller is chosen to be
he degree of hybridization, calculated as follows:

OH = power supplied by fuel cell to motor
power demand

(15)

While, normally DOH is used when sizing the vehicle compo-
ents, it is used in this controller as the main control variable. The
alue of DOH ranges from 0 to 1, with 0 representing a full battery
ehicle (powered by battery only) and 1 representing a full fuel cell
ehicle (powered by fuel cell only). Once the DOH is determined
rom the controller, it is multiplied by the required vehicle power
o obtain the required fuel cell power. A lookup table is then used
o convert the power requirement into current requirement. The
ontroller block diagram is shown in Fig. 5.
The second output variable of the fuzzy logic controller is the
urrent needed to maintain the battery SOC near the optimal value.
ince a 10 Ah battery is used, it is estimated that the maximum cur-
ent required to charge the battery if it were at 0% SOC is 5 A. Thus,
he value for the “FC charge current” output will range from 0 to 5 A
Fig. 6. Output membership functions.

depending on the SOC of the battery. The membership functions for
DOH and charge current are shown in Fig. 6, where it is classified
into three modes of operation: low, medium and high. The medium
mode of operation was chosen to cover the largest span of possible
Fig. 7. Input membership functions.
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Fig. 8. Fuzzy logic mathematical relationship.

aried from −1 to 1, where all negative values are categorized as
regen” mode and the positive values are divided into four sections:
uarter, half, three quarters and full pedal displacement.

Fig. 8 shows the mathematical relationship between the inputs
nd the outputs of the fuzzy logic controller; essentially the output
s a lookup table as a function of the battery state of charge and the
river pedal position.

. Instantaneous optimization approach

The problem of designing a power management strategy for
ybrid vehicles can be formulated into an optimization problem,

n which the cost function is the fuel consumption. However, as
entioned in Section 1, global optimizations are not feasible due

o the need to know the driving cycle ahead of time. Thus, a local
ptimization will be used instead. The local cost function is based
n the fuel flow rate supplied by the fuel cell. Since in the fuel
ell–battery hybrid vehicle all of the energy supplied essentially
omes from the hydrogen fuel, the energy withdrawn from both
ources must be converted into equivalent hydrogen fuel flow rate.
his was accomplished as follows:

˙ eq = ṁfc + c(ṁbatt) (16)

In this case, the fuel cell and battery equivalent fuel mass
ow rates are defined using the higher heating value of hydrogen
141.9 × 106 J kg−1):

˙ batt = ibattVbatt OC

141.9 × 106 J

1
EfffcEffbattEffDC

(17)

˙ fc = ifcvfc

141.9 × 106 J
1

Efffc
(18)
here Efffc, EffDc and Effbatt are the fuel cell, DC/DC converter and
attery efficiencies. The fuel cell efficiency is obtained by a lookup
able from the manufacturer, while an average value is used for the
attery efficiency.
Fig. 9. DOH optimization surface plot.

Another parameter that must be included in the optimization is
the SOC of the battery. In order to incorporate the SOC of the battery
in the optimization problem, the battery equivalent fuel flow rate
is multiplied by a variable factor “c”. This variable is varied between
0 and 2 depending on the SOC of the battery and can be defined as
follows:

c = 1 − SOC − ((SOCmax + SOCmin)/2)
(SOCmax − SOCmin)/2

(19)

In this equation, SOCmax and SOCmin are the maximum and min-
imum allowed SOC of the battery. In order to stay consistent with
the fuzzy logic approach presented previously, the SOC range will
be between 50% and 70%. This optimization problem is solved with-
out using any complex mathematical algorithm; instead a simple
for-loop is used to find the least hydrogen fuel flow rate while
varying DOH and the SOC. The result is a relationship between
the requested power, the SOC of the battery and the DOH, which
can be implemented in the controller as a two-dimensional lookup
table.

Fig. 9 shows the optimization results. It is clear to see that most
of the time the optimal fuel flow rate is achieved if the DOH is
highest, in other words, if the fuel cell is used as the main power
source with minimal supply from the battery. This comes as no
surprise since the most efficient way to transfer hydrogen power
to the electric drive is by going directly from the fuel cell. However,
that is not always true since maintaining the SOC of the battery
between 50% and 70% is a control objective. Thus, it can be seen that
as the battery SOC is increased, the DOH becomes smaller favouring
the battery over fuel cell in order to bring down its SOC, on the other
hand, as the SOC is decreased below its average, the DOH becomes
higher to recharge the battery. In addition to that, the efficiency of
the fuel cell varies as the power request is increased, this also plays
into finding the most optimal DOH, and can be seen in the variation
of DOH as power request is increased.

10. Simulation results

The federal test procedure (FTP-72) drive cycle also known as
the urban dynamometer driving schedule (UDDS) was used for test-
ing the powertrain performance. This driving cycle is mainly used
to simulate city driving conditions, where the vehicle is forced to
accelerate and decelerate very frequently. Thus, it is suitable for

this study, since the main goal is to improve the transient behavior
of fuel cell powered vehicles. However, in order to accommodate
the maximum speed of the SAE Baja vehicle (60 km h−1), the drive
cycle was scaled down by a factor of 1.5, resulting in a 20.63 km h−1

average speed over a distance of 8 km driving cycle. The total power
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Table 1
Hydrogen fuel consumption.

Distance
traveled (km)

Total fuel
consumed (kg)

H2 density @ 35 MPa
(kg H2 L−1)

Gas tank
volume (l)

PID method 8 0.008920 0.014 0.6372
Fuzzy method 8 0.008875 0.014 0.6339
Optimization method 8 0.008601 0.014 0.6144
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Fig. 10. FTP cycle power demand.

emand and the fuel cell power contribution for the fuzzy approach
nd optimization approach are shown in Fig. 10.

The change in the battery SOC during the simulation is shown
n Fig. 11. Due to the fact that the simulation time is less than
0 min, the variation in the SOC is not significant as it is kept within
%. However, it is clear to see the impact of the control strategy
n the SOC, the fuzzy logic control and PID approaches are more
harge sustaining than the optimization approach. The change in
OC shows how aggressive each control method is in maintaining
he battery SOC. This is in fact the main difference between hybrid
ehicle control strategies. Most control strategies operate around
eeping the SOC closer to a previously defined value, in this case
0% is that value; however, keeping the SOC around that value will

mpact the fuel efficiency of the vehicle. Thus, there is a tradeoff
n the way the SOC is maintained and the DOH that prolongs the
attery life and also optimizes fuel consumption.

The overall system efficiency curve for each control method is

hown in Fig. 12. In the case of a non-plug-in hybrid configuration,
he system efficiency essentially corresponds to the fuel consump-
ion since all energy comes from the hydrogen fuel. However, since
n this study the efficiency definition changes depending on the

Fig. 11. FTP cycle battery SOC variation.
Fig. 12. FTP cycle system efficiency.

mode of operation, it is important to see how the overall system effi-
ciency compares between the three control methods. The results
reflect the overall slight advantage that the optimization approach
offers.

The next step is to compare the fuel consumption (in kg of H2
fuel) of the vehicle over the 8 km it travels in the FTP-72 driving
cycle. The fuel consumption data are shown in Table 1. Although,
the difference is very small, it is clear to see as expected the opti-
mization method requires the least amount of fuel to get through
the driving cycle.

If the storage tank volume is taken into consideration (assum-
ing hydrogen is stored at 35 MPA) the optimization method saves
approximately 20 mL to drive a distance of 8 km. Thus, if the vehicle
is designed to have a driving range of 400 km for example, then the
optimization control method would save approximately 1 L of fuel
storage room. This number can become even more significant when
taking into consideration a midsize sedan or a van as opposed to
the SAE Baja vehicle. The MPGGE for each case was also calculated,
and it was determined that over the FTP driving cycle, the case with
fuzzy logic controller scores an MPGGE of 570.14 and the one with
optimization based controller scores an MPGGE of 585.35. In both
cases the MPGGE calculation takes into account both fuel needed to
drive the vehicle and the fuel needed to recharge the battery to its
initial SOC. Note that the obtained MPGGE values are for the 308 kg
Baja vehicle and this explains why they seem so high compared to

actual road vehicles, for example the Honda FCX Clarity has a mar-
keted MPGGE value of 72.8. Nonetheless, the MPGGE value gives a
good comparison of the performance of each control methodology.

Table 2
Battery cycle count.

PID Fuzzy Optimization

Discharge Charge Discharge Charge Discharge Charge

0.1% 63 45 62 49 58 47
0.5% 17 19 19 14 21 19
1.0% 2 3 5 5 7 2
2.0% 2 2 0 1 4 3
3.0% 0 0 0 0 0 0
5.0% 0 0 0 0 0 0
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speed at the motor shaft and the output speed in the simulation
model. The comparison is shown in Fig. 15.

The main objective of the experimental setup is to be able to
validate if the comparison results between the three control meth-
Fig. 13. Exp

Table 2 clearly shows that the number of cycles at small magni-
udes is very much the same as all three controllers if the discharge

agnitude is less than 0.1% change in SOC. However, as the mag-
itude of the change in SOC increases, the optimization approach
eems to have the largest number of discharge cycles. This can be
een at 0.5%, 1%, and 2% change in SOC magnitudes, where the opti-
ization approach has a total number of cycles of 32 compared
ith 21 for PID and 24 for fuzzy logic. In the case of charging cycles,

he PID control method has the largest number of charging cycles
t most magnitudes, with a small of decrease at lower SOC change
agnitudes. This can be justified by the fact that the PID controller

s more focused on charging the battery to a desired SOC, where the
OC is constantly monitored and maintained at 60%. The optimiza-
ion approach on the other hand, has the least number of charge
ycles when compared with the other two control methods, which
s expected given how it optimizes the fuel consumption by lim-
ting the fuel cell contribution. Overall, the optimization approach
eems to have the most impact on the battery life by forcing it to go
hrough more discharge cycles. However, determining how much
hat increase in the number of cycling has on the battery life is a
ifferent research area in on its own, and there is no clear way of
elling whether a slight increase in the cycle count is as significant
s the fuel consumption savings to the designer.

1. Experimental setup

While MATLAB/Simulink provides an excellent platform to
esign such a vehicle, the robustness of the design must be
alidated on the real electric powertrain components. Thus, an
xperimental test bench is needed to validate the designed power
anagement control methods. The test bench implemented in this
esearch is explained by the schematic in Fig. 13.
Due to its simplicity and ease of instrumentation and control, an

nertia dynamometer is selected to be the load for the test bench.
his idea was mainly inspired by an existing work done at the Uni-
ersity of Waterloo, where a flywheel dynamometer was used to
ntal setup.

simulate hybrid regenerative braking [13]. Due to its higher effi-
ciency and relatively lower cost an AC induction motor was selected
to drive the SAE Baja vehicle. In order to control the AC motor and
interface it to the fuel cell and battery DC bus, a vector drive con-
troller/inverter combination that are normally used for electric fork
lift utility vehicles are selected.

12. Experimental results

In order to quantify how the experimental setup matches the
desired simulation, the mathematical model in MATLAB/Simulink
was modified by adjusting the driving cycle to the accelerated cycle.
Also, the longitudinal vehicle dynamics model was modified to only
take into consideration the inertial forces acting on the vehicle. A
direct comparison of the electrical power demanded by the load
in the experimental setup and the mathematical simulation model
is shown in Fig. 14, where both the simulation and experimental
power demands are calculated based on the electrical measure-
ments of the system (i.e. power = total current × bus voltage).

A second comparison was done between the measured output
Fig. 14. Total power demand comparison.
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Fig. 15. Speed profile comparison.
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Fig. 17. Experimental cycle count.

Table 4
Summary of comparison.

PID Fuzzy logic Optimization
Fig. 16. Experimental SOC variation.

ds obtained in the mathematical model do in fact remain true for
he real system. As shown earlier the power demand obtained using
he experimental setup does not exactly match the mathematically
imulated power demand, thus, a direct quantitative comparison
s not very indicative of whether or not the experimental results

atch the simulation results. Instead, the results are compared by
onsidering the patterns of how the outputs of controllers behave
ith respect to each other. In the case of the battery SOC varia-

ion during the accelerated driving cycle, the results are shown in
ig. 16. Although, the battery SOC does not vary significantly (less
han 1% change), the pattern in the SOC variation using each control

ethod is indicative of whether or not the controller is operating
s expected from the simulation model.

The total fuel consumption using each control method is consid-
red next. The results show that the optimization approach has the
east fuel consumption over the driving cycle, which coincides with
he mathematical simulations. However, the amount of fuel saved
s on the order of 0.0000111 kg, which corresponds to a hydrogen
uel tank of 0.02417 L. Thus, the difference between using the fuzzy
ogic or the optimization approach would be a hydrogen fuel tank
olume savings of 0.00079 L, which is very insignificant even when
onsidering a longer traveling distance. Table 3 shows a summary
f the results.

The last comparison criteria between the control methods is
heir impact on the battery health, which is indicated by the number

f charge/discharge cycles the battery has to go through during the
riving cycle. Fig. 17 shows the total number of charge/discharge
ycles from the experimental results. Since the total change in the
OC is very small, only the total number of cycles is considered,
eaning that each change in the sign of the SOC is counted as a

able 3
xperimental fuel consumption.

Distance
traveled
(km)

Total fuel
consumed
(kg)

H2 density
@ 35 MPa
(kg H2 L−1)

Gas tank
volume (l)

PID method 8 0.0003656 0.014 0.02611
Fuzzy method 8 0.0003495 0.014 0.02496
Optimization method 8 0.0003384 0.014 0.02417
Strategy Load leveling Rule based Load following
Fuel efficiency Lowest In the middle Highest
Battery cycling Small cycles Small cycles Big cycles

beginning of a charge or discharge cycle, regardless of the mag-
nitude. The PID control method results in the largest number of
cycles in the battery, which can be explained by the goal of this
method which is to keep the SOC near 60% at all times. The fuzzy
and the optimization approaches result in a very close number of
charge/discharge cycles. Therefore, even if the magnitude is small,
the results obtained from the experiment are very similar to the
simulation results.

13. Conclusion

Considering the direct comparison results presented, it is dif-
ficult to make a conclusion on which control methodology is the
most appropriate for this application, since that really depends on
the priorities of the designer. The results have clearly shown that
the instantaneous optimization results in the least fuel consump-
tion and thus most efficient hybrid configuration. However, the
results also show that savings in the fuel consumption are small
when compared to fuel consumption numbers of similar cars that
are currently on the road. The other main factor that was consid-
ered in the comparison is the battery cycling using each control
method. In general it was shown using both the simulation and
experimentally, that the optimization approach results in the least
number of cycles if the cycle magnitude is very small (on the order
of 0.1% SOC) however, when looking at cycles with larger magni-
tudes, the optimization approach forces the battery through the
most charge/discharge cycles. Thus, there seems to be a tradeoff
between improving the fuel consumption of the vehicle or improv-
ing the degradation time of its powertrain components. Deciding
which factor is more important will depend on the application.
Also it should be mentioned that although it is true that partial
SOC cycling can result in battery capacity degradation, there is still
no clear indication of how many partial SOC cycles the battery
can withstand before it starts to degrade. Overall, the comparison
between the three control methods is shown in Table 4.

To summarize, the main accomplishment of this work is in pre-
senting an alternative local optimization approach that does not
require prior knowledge of the driving cycle and a set of per-
formance measures to evaluate the effectiveness of the proposed
approach. In order to validate the effectiveness of the optimization
approach, standard performance measures that consider battery

life, fuel consumption and system efficiency were developed. In
addition to that, the experimental setup used to validate the simu-
lation results presents a platform for further work that can be done
in the area of power management and electric vehicle powertrain
design.
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